ESP8266 MultiPWMs ver.0.1
目前是初版,基本功能有了。後續還會再加入主要函式 sync function 等。
Based on MultiTimers。
// Esp8266MultiPwms ver.0.1
// https://waterfalls.ddns.net
// by Ken Woo
// 2020.12.03
// PWM class: using MultiTimersV0.4 to generate four 192us timers which are sequentially sync-offset by 48us to one another.
// which are approaching to and are regarded as 200us/50us. Such a facility forms a single 50us timer with 4 sequential ISRs.
// PWM waveforms whereas ought to be transition of the processes will be evenly settled in the 4 ISRs,
// unless there are specified ones to be explicitly offset or synced to another, which determines the position.
// note that explicitly sync offset is restricted only to same period PWM.
// duty cycle 70% means headed high 70% first then low, inverted duty cycle 70% means headed low 70% then high.
// sync or offset counts for headed beginning.
// so, PWM periods are restricted to multiples of 200us(and at least 200us, at most 0.8s; in order to have fixed positions),
// in addition, the duty cycle step must be multiple of 50us, is restricted too.
// for example, 2.2ms PWM with 45 steps is allowed; 2200/200=11 is integer, 2200/44/50=1 is integer,
// step0 0%, step1 <=2.27%(100%/44), step2(<=100%*2/44)..., step44(>100%*43/44) 100%.
// or with 12 steps, each step is 200us, and the like.
// the highest one is 200us/5kHz with 5 steps(0%, 0%< <=25%, 25%< <=50%, 50%< <=75%, 75%< <=100%).
// the number of PWMs depends on bits of id; you can rewrite it for unlimited PWMs theoretically.
#include"Esp8266HwSwTimers.h"
unsigned z1, z2, z3, z4;
class cMultiPwm{
typedef struct sPwmObj{
unsigned counter: 12; // counter, reload to it.
unsigned rsv1_not_use: 20; // reserved 1. it should be 0 and do not use.
unsigned rsv2: 20; // reserved 2.
unsigned reload_high: 12; // reload count for high level. 200us is one-round, 200x4096=0.8s.
unsigned freeze: 1; // will not access this obj.
unsigned stopit: 1; // will delete this obj.
unsigned accepted: 1; // this bit will be set if isr accepted freeze or stopit.
unsigned is_fixed_pos: 1; // is it a fixed position by a synced PWM; the whom synced must fixed too.
unsigned is_inverted: 1; // we use it at the final waveform, so it affects nothing.
unsigned is_high_level: 1; // the current level counted is high? it will be toggling.
unsigned stop_h_or_l: 1; // high or low when stopped.
unsigned tr_high_pos: 2; // the position at timer ISR[] for transiting to high level, it exists with low-counting.
unsigned tr_low_pos: 2; // the position at timer ISR[] for transiting to low level, coexists with high-counting.
unsigned gpio: 4; // the gpio pin number
unsigned id: 5; // id in order to search. for unlimited new/delete, must maintain it. but i prefer not.
unsigned reload_low: 12; // reload count for low level. 200us is one-round, 200x4096=0.8s.
// note the relationship of is_high_level, tr_high_pos, tr_low_pos.
// is_high_level indicats currently is high counting or low. tr_high_pos: currently is low level counting,
// it is going to transit to high level, so it is positioned at tr_high_pos, and vice versa.
// so, the duty-cycle count allocates on reload_high, and when which positioning at tr_high_pos, is active, it is counting low,
// when count-up, loading the reload_high to counter, transits the level from low to high, and finally hands over the control
// to tr_low_pos for it active. after a while the count is up again, it is responsible for transiting from high to low,
// then reload reload_low, and then changing position to tr_high_pos again alternatively.
sPwmObj(){
(reinterpret_cast<unsigned*>(this))[0]=0;
(reinterpret_cast<unsigned*>(this))[1]=0;
(reinterpret_cast<unsigned*>(this))[2]=0;
}
} sPwmObj;
typedef struct sNode{
sPwmObj data;
sNode *next;
sNode(): next(0){};
} sNode;
IRAM_ATTR static sNode** node_get_conn_pt(sNode **head){ // get the tail-next address so we can store data in it.
sNode *a=*head;
while (a){
head=&(a->next);
a=a->next;
}
return head;
};
int node_get_length(sNode *head){ // evaluate the linkedlist length
int i=0;
for (; head; i++, head=head->next);
return i;
};
void node_add(sNode **head, sNode *a){ // attach a node to the tail
while (*head) head=&((*head)->next);
*head=a;
};
void node_delete(sNode *head){ // delete entire linkedlist
for (sNode *i; head; i=head->next, delete head, head=i);
};
IRAM_ATTR static sNode** node_pwm_dec_cnt(sNode **head){ // possibly process several times by caller.
sNode *a=*head;
for (; a && (a->data).counter>1; --(a->data).counter, head=&(a->next), a=a->next); // 1 is minimum.
if (a) return head;
return 0;
};
sNode** node_pwm_find_parent(unsigned id, unsigned pos){ // find the parent of the node having this id.
sNode **i;
for (i=&(pwms[pos]); *i && ((*i)->data).id!=id; i=&((*i)->next));
if (!*i) return 0;
return i;
};
IRAM_ATTR static void node_pwm_move_to(sNode **src, unsigned new_pos){ // move this src node to attach to pwms[new_pos].
sNode *obj=*src;
*src=obj->next;
*node_get_conn_pt(&(pwms[new_pos]))=obj;
obj->next=0;
/// priorly excluded.
/// sNode **a=node_get_conn_pt(&(pwms[new_pos]));
/// if (&((*src)->next)!=&((*a)->next)){*a=*src;*src=(*src)->next;(*a)->next=0;}
};
unsigned wellAdd(sNode *a){ // add to proper ISR position, return the position.
unsigned i=0, j=0, pos=0, min=-1;
for (; i<4; i++){
if (pwms[i]){
if ((j=node_get_length(pwms[i]))<min){
pos=i;
min=j;
}
}
else {pos=i; break;} // empty
}
node_add(&(pwms[pos]), a);
return pos;
};
void configTimer(){
timers[0].setTimer(192, cMultiPwm::timerISR0);
timers[1].setTimer(192, cMultiPwm::timerISR1);
timers[2].setTimer(192, cMultiPwm::timerISR2);
timers[3].setTimer(192, cMultiPwm::timerISR3);
timers[1].ForceHaltForSync(timers[0], 48);
timers[2].ForceHaltForSync(timers[1], 48);
timers[3].ForceHaltForSync(timers[2], 48);
};
void* getMemory(int obj_size){ // use sizeof(unsigned) and alignment; little endian.
int a=(obj_size+sizeof(unsigned)-1)/sizeof(unsigned);
void *b=malloc(sizeof(unsigned)*a);
if (b && (unsigned(b)/sizeof(unsigned)*sizeof(unsigned)==unsigned(b))){
for (; a--; ((unsigned*)b)[a]=0);
return b;
}
free(b);
return 0;
};
void freeMemory(void *b){free(b);};
static cHwTimer timers[4];
static sNode* pwms[4];
static unsigned pause_all; // to avoid conflict
static unsigned gid;
sNode *owner;
unsigned period;
unsigned steps; // 0% is not counted. however we need it be a step.
unsigned uid;
public:
cMultiPwm(): owner(0), uid(0){};
~cMultiPwm(){freeMemory(owner);};
cMultiPwm(unsigned gpio, unsigned period_us, unsigned set_steps,\
bool inverted=false, bool stop_high=false): owner(0), uid(0){ // if a step is 1%, use 100 steps, not 101 steps.
if (period_us%200 || !set_steps || period_us%set_steps || period_us/set_steps%50) return;
period=period_us;
steps=set_steps;
uid=++gid;
owner=(sNode*)getMemory(sizeof(sNode));
if (!owner) return;
(owner->data).id=uid;
(owner->data).is_inverted=!!inverted;
(owner->data).is_high_level=0; // at the outset, it is going to high, so it is under low before beginning.
(owner->data).stop_h_or_l=!!stop_high;
(owner->data).gpio=gpio;
(owner->data).freeze=1; // paused
(owner->data).tr_high_pos=wellAdd(owner); // at the outset, raise high then immed change pos to tr_low_pos.
};
bool start(){if (!uid) return false; (owner->data).freeze=0; return true;};
bool pause(){if (!uid) return false; (owner->data).freeze=1; return true;};
bool ack(){return (owner->data).accepted;};
void nack(){(owner->data).accepted=0;};
void setInvert(bool invert_or_not){
if (!uid) return;
(owner->data).is_inverted=!!invert_or_not;
};
void setDC(float percentage, unsigned set_by_steps=0){ // will by steps if it is nonzero
if (!uid) return;
if (!set_by_steps){
(percentage*=steps)/=100.0f;
if ((set_by_steps=unsigned(percentage))<percentage) set_by_steps++;
}
else if (set_by_steps>steps) set_by_steps=steps;
set_by_steps*=period/steps/50; // times the magnifier to get the native count
// important note that the counting for high, time-up is decided at tr_low_pos, but time starts at tr_high_pos.
// different position means different time, that is the problem.
// integer quotient, 0 remainder, means integer rounds starts from pos and ends at pos.
// remainder if any means the last round that is not a complete round and ends at tr_pos other than pos.
// so, quotient+1 would be the final count.
// however one more to consider, if remainder is 0, expected time-up and count-up are exactly matched at the same pos,
// but what if in such case, we take other position for end? yes, beyond or behind the expected time when count is up.
// so how to do right the code here(tr_high_pos and tr_low_pos are diff pos, could the COUNT handle it all correctly)?
// that is right, nothing to do about this problem since tr_low_pos of its position had taken care, think about it.
// yet the other problem to think about, the boundary condition. when counter becomes 1 which is minimum because
// we either add 1 if remainder or quotient is nonzero/because 0% is excluded, is for tr_low_pos to make decision,
// hence the 1 means time is up; the 1 represents time spent from tr_high_pos to tr_low_pos under a round(equal if same pos).
// however what about the time span for low level at the condition of high level counts is only 1 and high-counts > low-counts?
// it could happen for example period=200us, step=4, dc=25~75%/count-always-1, low should be 0 by calculation.
// as a whole if calculation lead to 0 for low level, our decision making uses >1 in node_pwm_dec_cnt could cover each condition,
// that is, time spent is correct.
this->pause();
while (timers[0].isActive() && !this->ack()) delayMicroseconds(25);
if (!set_by_steps){ // 0%, it paused for isr ignores.
digitalWrite((owner->data).gpio, LOW);
return;
}
else if (set_by_steps==steps){ // 100%, it paused for isr ignores.
digitalWrite((owner->data).gpio, HIGH);
return;
}
int pos=(owner->data).tr_high_pos;
int tr_pos=set_by_steps%4;
int count=set_by_steps/4;
if (!tr_pos) tr_pos=pos;
else {
count++;
tr_pos+=pos;
if (tr_pos>3) tr_pos-=4;
}
(owner->data).tr_low_pos=tr_pos; // this is the "duty-cycle count" cast into "tr_low_pos".
(owner->data).reload_high=count;
(owner->data).reload_low=period/200-count;
(owner->data).counter=1; // force to reload for starting.
this->start();
this->nack();
if (!timers[0].isActive()) configTimer();
};
static void traverseLinkedList(){
int c=0;
for (int i=0; i<4; i++){
sNode *a=pwms[i];
while (a){
printf("level, tr_high_pos, tr_low_pos, gpio, id, rld_high, rld_low, (%d, %d, %d, % 2d, % 2d, %d, %d)\r\n",\
(*a).data.is_high_level,\
(*a).data.tr_high_pos,\
(*a).data.tr_low_pos,\
(*a).data.gpio,\
(*a).data.id,\
(*a).data.reload_high,\
(*a).data.reload_low);
a=a->next;
c++;
}
printf("(%d) ----\r\n", i);
}
printf("The 4 ISRs (%d nodes in it) each costs us time (%d %d %d %d)\r\n\r\n", c, z1, z2, z3, z4);
};
IRAM_ATTR static void trigger(sNode **u){
while (u=node_pwm_dec_cnt(u)){
sPwmObj *v=&((*u)->data);
if (v->freeze){ // and for stop check
v->accepted=1;
}
else if (v->is_high_level^=1){ // if going to high counting
digitalWrite(v->gpio, !v->is_inverted);
v->counter=v->reload_high;
if (v->tr_high_pos!=v->tr_low_pos)
node_pwm_move_to(u, v->tr_low_pos);
}
else {
digitalWrite(v->gpio, v->is_inverted);
v->counter=v->reload_low;
if (v->tr_high_pos!=v->tr_low_pos)
node_pwm_move_to(u, v->tr_high_pos);
}
if (*u) u=&((*u)->next);
}
};
IRAM_ATTR static void timerISR0(){
static int x;
x=micros();
trigger(&(pwms[0]));
z1=micros()-x;
};
IRAM_ATTR static void timerISR1(){
static int x;
x=micros();
trigger(&(pwms[1]));
z2=micros()-x;
};
IRAM_ATTR static void timerISR2(){
static int x;
x=micros();
trigger(&(pwms[2]));
z3=micros()-x;
};
IRAM_ATTR static void timerISR3(){
static int x;
x=micros();
trigger(&(pwms[3]));
z4=micros()-x;
};
};
cHwTimer cMultiPwm::timers[4];
IRAM_ATTR cMultiPwm::sNode* cMultiPwm::pwms[4]={0, 0, 0, 0};
unsigned cMultiPwm::pause_all;
unsigned cMultiPwm::gid;
cMultiPwm sss[16]={
{D2, 200, 4},
{D3, 4000, 10},
{D4, 20000, 4},
{D5, 2000, 8},
{D6, 120000, 10},
{D7, 126000, 10},
{D8, 130000, 10},
{D1, 136000, 10},
{D1, 322000, 10},
{D1, 332000, 10},
{D1, 342000, 10},
{D1, 352000, 10},
{D6, 200, 4},
{D7, 200, 4},
{D8, 200, 4},
{D1, 200, 4},
};
bool Timeout_3s(){
static int current_time = millis();
int new_time = millis();
if (new_time < (current_time + 3000)) return false;
current_time = new_time;
return true;
}
void setup() {
Serial.begin(115200);
pinMode(D2, OUTPUT);
pinMode(D3, OUTPUT);
pinMode(D4, OUTPUT);
pinMode(D5, OUTPUT);
delay(5000);
sss[0].setDC(51);
sss[1].setDC(51, 2);
sss[2].setDC(77, 1);
sss[3].setDC(0, 7);
sss[4].setDC(0, 1);
sss[5].setDC(0, 2);
sss[6].setDC(0, 3);
sss[7].setDC(0, 4);
sss[8].setDC(0, 5);
sss[9].setDC(0, 6);
sss[10].setDC(0, 7);
sss[11].setDC(0, 8);
sss[12].setDC(0, 2);
sss[13].setDC(0, 1);
sss[14].setDC(0, 3);
sss[15].setDC(0, 4);
}
void loop() {
if (Timeout_3s()){
cMultiPwm::traverseLinkedList();
static unsigned y;
sss[0].setDC(0, y);
if (++y>4) y=0;
}
}